Course Description
This course is offered both to undergraduates (6.041) and graduates (6.431), but the assignments differ. 6.041/6.431 introduces students to the modeling, quantification, and analysis of uncertainty. Topics covered include: formulation and solution in sample space, random variables, transform techniques, simple random processes and their probability distributions, Markov processes, limit theorems, and elements of statistical inference.
Lecture Notes:
| SES # | TOPICS ( Click  to download Pdf Slides) | 
| L1 | Probability Models and Axioms (PDF) | 
| L2 | Conditioning and Bayes' Rule (PDF) | 
| L3 | Independence (PDF) | 
| L4 | Counting Sections (PDF) | 
| L5 | Discrete Random Variables; Probability Mass   Functions; Expectations (PDF) | 
| L6 | Conditional Expectation; Examples (PDF) | 
| L7 | Multiple Discrete Random Variables (PDF) | 
| L8 | Continuous Random Variables - I (PDF) | 
| L9 | Continuous Random Variables - II (PDF) | 
| L10 | Continuous Random Variables and Derived   Distributions (PDF) | 
| L11 | More on Continuous Random Variables,   Derived Distributions, Convolution (PDF) | 
| L12 | Transforms (PDF) | 
| L13 | Iterated Expectations (PDF) | 
| L13A | Sum of a Random Number of Random Variables (PDF) | 
| L14 | Prediction; Covariance and Correlation (PDF) | 
| L15 | Weak Law of Large Numbers (PDF) | 
| L16 | Bernoulli Process (PDF) | 
| L17 | Poisson Process (PDF) | 
| L18 | Poisson Process Examples (PDF) | 
| L19 | Markov Chains - I (PDF) | 
| L20 | Markov Chains - II (PDF) | 
| L21 | Markov Chains - III (PDF) | 
| L22 | Central Limit Theorem (PDF) | 
| L23 | Central Limit Theorem (cont.), Strong Law   of Large Numbers (PDF) | 
 
 
No comments:
Post a Comment