Course Description
This course is offered both to undergraduates (6.041) and graduates (6.431), but the assignments differ. 6.041/6.431 introduces students to the modeling, quantification, and analysis of uncertainty. Topics covered include: formulation and solution in sample space, random variables, transform techniques, simple random processes and their probability distributions, Markov processes, limit theorems, and elements of statistical inference.
Lecture Notes:
SES # | TOPICS ( Click to download Pdf Slides) |
L1 | Probability Models and Axioms (PDF) |
L2 | Conditioning and Bayes' Rule (PDF) |
L3 | Independence (PDF) |
L4 | Counting Sections (PDF) |
L5 | Discrete Random Variables; Probability Mass Functions; Expectations (PDF) |
L6 | Conditional Expectation; Examples (PDF) |
L7 | Multiple Discrete Random Variables (PDF) |
L8 | Continuous Random Variables - I (PDF) |
L9 | Continuous Random Variables - II (PDF) |
L10 | Continuous Random Variables and Derived Distributions (PDF) |
L11 | More on Continuous Random Variables, Derived Distributions, Convolution (PDF) |
L12 | Transforms (PDF) |
L13 | Iterated Expectations (PDF) |
L13A | Sum of a Random Number of Random Variables (PDF) |
L14 | Prediction; Covariance and Correlation (PDF) |
L15 | Weak Law of Large Numbers (PDF) |
L16 | Bernoulli Process (PDF) |
L17 | Poisson Process (PDF) |
L18 | Poisson Process Examples (PDF) |
L19 | Markov Chains - I (PDF) |
L20 | Markov Chains - II (PDF) |
L21 | Markov Chains - III (PDF) |
L22 | Central Limit Theorem (PDF) |
L23 | Central Limit Theorem (cont.), Strong Law of Large Numbers (PDF) |
No comments:
Post a Comment