Course Description
This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.
Technical Requirements
Special software is required to use some of the files in this course:.m.
Lecture Notes
| LEC # | LECTURE NOTES | SUPPLEMENTARY FILES | 
| 1 | Introduction, Basic   Linear Algebra (PDF) 6 slides per page (PDF) | |
| 2 | Orthogonal Vectors   and Matrices, Norms (PDF) 6 slides per page (PDF) | Vector Normslec2mldemo1.m (M) Induced Matrix Normslec2mldemo2.m (M) | 
| 3 | The Singular Value   Decomposition (PDF) 6 slides per page (PDF) | |
| 4 | The QR   Factorization (PDF) 6 slides per page (PDF) | |
| 5 | Gram-Schmidt   Orthogonalization (PDF) 6 slides per page (PDF) | Classical and Modified Gram-Schmidtlec5mldemo1.m (M) clgs.m (M) mgs.m (M) | 
| 6 | Householder   Reflectors and Givens Rotations (PDF) 6 slides per page (PDF) | Householder QR Factorizationhouse.m (M) formQ.m (M) | 
| 7 | Least Squares   Problems (PDF) 6 slides per page (PDF) | |
| 8 | Floating Point   Arithmetic, The IEEE Standard (PDF) 6 slides per page (PDF) | Floating Point Arithmeticlec8mldemo1.m   (M) num2bin.m (M) | 
| 9 | Conditioning and   Stability I (PDF) 6 slides per page (PDF) | |
| 10 | Conditioning and   Stability II (PDF) 6 slides per page (PDF) | |
| 11 | Gaussian   Elimination, The LU Factorization (PDF) 6 slides per page (PDF) | LU Factorizationlec11mldemo1.m (M) lec11mldemo2.m (M) mkL.m (M) mkP.m (M) | 
| 12 | Stability of LU,   Cholesky Factorization (PDF) 6 slides per page (PDF) | |
| 13 | Eigenvalue Problems   (PDF) 6 slides per page (PDF) | |
| 14 | Hessenberg /   Tridiagonal Reduction (PDF) 6 slides per page (PDF) | |
| 15 | The QR Algorithm I   (PDF) 6 slides per page (PDF) | |
| 16 | The QR Algorithm II   (PDF) 6 slides per page (PDF) | Jacobi Algorithmlec16mldemo1.m (M) jacrot.m (M) | 
| 17 | Other Eigenvalue   Algorithms (PDF) 6 slides per page (PDF) | Method of Bisectionlec17mldemo1.m (M) sturmcount.m (M) Divide-and-Conquer Algorithmlec17mldemo2.m (M) | 
| 18 | The Classical   Iterative Methods (PDF) 6 slides per page (PDF) | |
| 19 | The Conjugate   Gradients Algorithm I (PDF) 6 slides per page (PDF) | Conjugate Gradientscg.m (M) cg_stats.m (M) | 
| 20 | The Conjugate Gradients   Algorithm II (PDF) 6 slides per page (PDF) | Conjugate Gradientslec20mldemo1.m (M) steep.m (M) conjdir.m (M) conjgrad.m (M) | 
| 21 | Sparse Matrix   Algorithms (PDF) 6 slides per page (PDF) | Elimination Movielec21mldemo1.m (M) realmmd.m (M) | 
| 22 | Preconditioning,   Incomplete Factorizations (PDF) 6 slides per page (PDF) | |
| 23 | Arnoldi / Lanczos   Iterations (PDF) 6 slides per page (PDF) | Arnoldi Iterationarnoldi.m (M) | 
| 24 | GMRES, Other Krylov   Subspace Methods (PDF) 6 slides per page (PDF) | |
| 25 | Linear Algebra   Software (PDF) 6 slides per page (PDF) | 
Assignments
Special software is required to use some of the files in this section: .m.
This course has 6 homework assignments which are collectively worth 60% of the grade.
Collaboration on the homeworks is encouraged, but each student must write his/her own solutions, understand all the details of them, and be prepared to answer questions about them.
The assignments are due in the lectures listed.
| LEC # | ASSIGNMENTS | SUPPLEMENTARY FILES | 
| 5 | Homework 1 (PDF) | |
| 9 | Homework 2 (PDF) | |
| 12 | Homework 3 (PDF) | |
| 16 | Homework 4 (PDF) | Banded Choleskybandtest.m (M) | 
| 21 | Homework 5 (PDF) | Linear Elasticity Utilitiesassemble.m (M) elmatrix.m (M) mkmodel.m (M) qdplot.m (M) qdanim.m (M) | 
| 25 | Homework 6 (PDF) | 
 
 
No comments:
Post a Comment