Course Description
This course offers an advanced introduction to numerical linear algebra. Topics include direct and iterative methods for linear systems, eigenvalue decompositions and QR/SVD factorizations, stability and accuracy of numerical algorithms, the IEEE floating point standard, sparse and structured matrices, preconditioning, linear algebra software. Problem sets require some knowledge of MATLAB®.
Technical Requirements
Special software is required to use some of the files in this course:.m.
Lecture Notes
LEC # | LECTURE NOTES | SUPPLEMENTARY FILES |
1 | Introduction, Basic Linear Algebra (PDF) 6 slides per page (PDF) | |
2 | Orthogonal Vectors and Matrices, Norms (PDF) 6 slides per page (PDF) | Vector Normslec2mldemo1.m (M) Induced Matrix Normslec2mldemo2.m (M) |
3 | The Singular Value Decomposition (PDF) 6 slides per page (PDF) | |
4 | The QR Factorization (PDF) 6 slides per page (PDF) | |
5 | Gram-Schmidt Orthogonalization (PDF) 6 slides per page (PDF) | Classical and Modified Gram-Schmidtlec5mldemo1.m (M) clgs.m (M) mgs.m (M) |
6 | Householder Reflectors and Givens Rotations (PDF) 6 slides per page (PDF) | Householder QR Factorizationhouse.m (M) formQ.m (M) |
7 | Least Squares Problems (PDF) 6 slides per page (PDF) | |
8 | Floating Point Arithmetic, The IEEE Standard (PDF) 6 slides per page (PDF) | Floating Point Arithmeticlec8mldemo1.m (M) num2bin.m (M) |
9 | Conditioning and Stability I (PDF) 6 slides per page (PDF) | |
10 | Conditioning and Stability II (PDF) 6 slides per page (PDF) | |
11 | Gaussian Elimination, The LU Factorization (PDF) 6 slides per page (PDF) | LU Factorizationlec11mldemo1.m (M) lec11mldemo2.m (M) mkL.m (M) mkP.m (M) |
12 | Stability of LU, Cholesky Factorization (PDF) 6 slides per page (PDF) | |
13 | Eigenvalue Problems (PDF) 6 slides per page (PDF) | |
14 | Hessenberg / Tridiagonal Reduction (PDF) 6 slides per page (PDF) | |
15 | The QR Algorithm I (PDF) 6 slides per page (PDF) | |
16 | The QR Algorithm II (PDF) 6 slides per page (PDF) | Jacobi Algorithmlec16mldemo1.m (M) jacrot.m (M) |
17 | Other Eigenvalue Algorithms (PDF) 6 slides per page (PDF) | Method of Bisectionlec17mldemo1.m (M) sturmcount.m (M) Divide-and-Conquer Algorithmlec17mldemo2.m (M) |
18 | The Classical Iterative Methods (PDF) 6 slides per page (PDF) | |
19 | The Conjugate Gradients Algorithm I (PDF) 6 slides per page (PDF) | Conjugate Gradientscg.m (M) cg_stats.m (M) |
20 | The Conjugate Gradients Algorithm II (PDF) 6 slides per page (PDF) | Conjugate Gradientslec20mldemo1.m (M) steep.m (M) conjdir.m (M) conjgrad.m (M) |
21 | Sparse Matrix Algorithms (PDF) 6 slides per page (PDF) | Elimination Movielec21mldemo1.m (M) realmmd.m (M) |
22 | Preconditioning, Incomplete Factorizations (PDF) 6 slides per page (PDF) | |
23 | Arnoldi / Lanczos Iterations (PDF) 6 slides per page (PDF) | Arnoldi Iterationarnoldi.m (M) |
24 | GMRES, Other Krylov Subspace Methods (PDF) 6 slides per page (PDF) | |
25 | Linear Algebra Software (PDF) 6 slides per page (PDF) |
Assignments
Special software is required to use some of the files in this section: .m.
This course has 6 homework assignments which are collectively worth 60% of the grade.
Collaboration on the homeworks is encouraged, but each student must write his/her own solutions, understand all the details of them, and be prepared to answer questions about them.
The assignments are due in the lectures listed.
LEC # | ASSIGNMENTS | SUPPLEMENTARY FILES |
5 | Homework 1 (PDF) | |
9 | Homework 2 (PDF) | |
12 | Homework 3 (PDF) | |
16 | Homework 4 (PDF) | Banded Choleskybandtest.m (M) |
21 | Homework 5 (PDF) | Linear Elasticity Utilitiesassemble.m (M) elmatrix.m (M) mkmodel.m (M) qdplot.m (M) qdanim.m (M) |
25 | Homework 6 (PDF) |
No comments:
Post a Comment