Book Description:
Machine Learning is the study of computer algorithms that improve automatically through experience. Applications range from datamining programs that discover general rules in large data sets, to information filtering systems that automatically learn users' interests.Slides for instructors:
The following slides are made available for instructors teaching from the textbook Machine Learning, Tom Mitchell, McGraw-Hill.
- Ch 1.      Introduction. ( postscript 3.8Meg), ( gzipped postscript 317k) (pdf ) ( latex source )- Ch 2. Concept      Learning. ( postscript 347k), ( gzipped postscript 100k) (pdf ) ( latex source )- Ch 3. Decision      Tree Learning. ( postscript 530k), ( gzipped postscript 143k) (pdf ) ( latex source )- Ch 4.      Artificial Neural Networks. ( postscript 1.83Meg), ( gzipped postscript 329k) (pdf ) ( latex source )- Ch 5.      Evaluating Hypotheses. ( postscript 212k), ( gzipped postscript 67k) (pdf ) ( latex source )- Ch 6. Bayesian      Learning. ( postscript 261k), ( gzipped postscript 81k) (pdf ) ( latex source )
 see also slides on      learning Bayesian networks by      Friedman and Goldszmidt.- Ch 7.      Computational Learning Theory. ( postscript 160k), ( gzipped postscript 50k) (pdf ) ( latex source )- Ch 8. Instance      Based Learning. ( postscript 138k), ( gzipped postscript 39k) (pdf ) ( latex source )- Ch 9. Genetic      Algorithms. ( postscript 245k), ( gzipped postscript 72k) (pdf ) ( latex source )- Ch 10.      Learning Sets of Rules. ( postscript 185k), ( gzipped postscript 57k) (pdf ) ( latex source )- Ch 11.      Analytical Learning. ( postscript 261k)  (pdf )   ( latex      source ) - Ch 12.      Combining Inductive and Analytical Learning. ( postscript 419k), ( gzipped postscript 103k) (pdf ) ( latex source )- Ch 13.      Reinforcment Learning. ( postscript 172k), ( gzipped postscript 40k) (pdf ) ( latex source )
Additional tutorial materials:
Support Vector Machines:
- Tutorial information      on Support vector machines- Freeware      implementation : SVM Light by Thorsten Joachims.- K.-R. Müller,      S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to      kernel-based learning algorithms. IEEE Neural Networks,      12(2):181-201, May 2001. (PDF)
see also slides on learning Bayesian networks by Friedman and Goldszmidt.
 
 
1 comment:
Nice Post. I like your blog. Thanks for Sharing.
Machine Learning Training Institute in Noida
Post a Comment